An automorphism $\phi : X \rightleftarrows X$ of some [[algebra]]ic structure $X$ is an [[isomorphism]] from $X$ to itself.
Note that the set of automorphisms $\mathrm{Aut}(X)$ forms a [[group]] under composition (called the **automorphism group** or **symmetric group** of $X$):
- $f, g \in \mathrm{Aut}(X) \implies f \circ g \in \mathrm{Aut}(X)$
- $\mathrm{id}_{X} \in \mathrm{Aut}(X)$
- $f \in \mathrm{Aut}(X) \implies f^{-1} \in \mathrm{Aut}(X)$
In particular, for a finite $X$ of $N$ elements, the symmetry group is exactly the set of permutations of those elements.
# sources
[[1991PierceBasicCategoryTheory]]
[Symmetric Group | Brilliant Math & Science Wiki](https://brilliant.org/wiki/symmetry-group/)
[Symmetric group - Wikipedia](https://en.wikipedia.org/wiki/Symmetric_group)